22 research outputs found

    Communities in complex networks

    Get PDF
    The study of complex networks has attracted the attention of the scientific community for many obvious reasons. A vast number of systems, from the brain to ecosystems, power grid, and the Internet, can be represented as large complex networks, i.e, assemblies of many interacting components with nontrivial topological properties. The link between these components can describe a global behaviour such as the Internet traffic, electricity supply service, market trend, etc. One of the most relevant topological feature of graphs representing these complex systems is community structure which aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology. Deciphering network community structure is not only important in order to characterize the graph topologically, but gives some information both on the formation of the network and on its functionality

    Modeling and Calibration for Some Stochastic Differential Models

    Get PDF
    In many scientific fields, the dynamics of the system are often known, and the main challenge is to estimate the parameters that model the behavior of the system. The question then arises whether one can use experimental measurements of the system response to derive the parameters? This problem has been addressed in many papers that focus mainly on data from a deterministic model, but few efforts have been made to use stochastic data instead. In this paper, we address this problem using the following procedure: first, we build the probabilistic stochastic differential models using a natural extension of the commonly used deterministic models. Then, we use the data from the stochastic models to estimate the model parameters by solving a nonlinear regression problem. Since the stochastic solutions are not differentiable, we use the well-known Nelder–Mead algorithm. Our numerical results show that the fitting procedure is able to obtain good estimates of the parameters requiring only a few sample data

    Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction

    Get PDF
    Facial Beauty Prediction (FBP) is an important visual recognition problem to evaluate the attractiveness of faces according to human perception. Most existing FBP methods are based on supervised solutions using geometric or deep features. Semi-supervised learning for FBP is an almost unexplored research area. In this work, we propose a graph-based semi-supervised method in which multiple graphs are constructed to find the appropriate graph representation of the face images (with and without scores). The proposed method combines both geometric and deep feature-based graphs to produce a high-level representation of face images instead of using a single face descriptor and also improves the discriminative ability of graph-based score propagation methods. In addition to the data graph, our proposed approach fuses an additional graph adaptively built on the predicted beauty values. Experimental results on the SCUTFBP-5500 facial beauty dataset demonstrate the superiority of the proposed algorithm compared to other state-of-the-art methods

    Modeling and Calibration for Some Stochastic Differential Models

    Get PDF
    In many scientific fields, the dynamics of the system are often known, and the main challenge is to estimate the parameters that model the behavior of the system. The question then arises whether one can use experimental measurements of the system response to derive the parameters? This problem has been addressed in many papers that focus mainly on data from a deterministic model, but few efforts have been made to use stochastic data instead. In this paper, we address this problem using the following procedure: first, we build the probabilistic stochastic differential models using a natural extension of the commonly used deterministic models. Then, we use the data from the stochastic models to estimate the model parameters by solving a nonlinear regression problem. Since the stochastic solutions are not differentiable, we use the well-known Nelder–Mead algorithm. Our numerical results show that the fitting procedure is able to obtain good estimates of the parameters requiring only a few sample data.This work was supported by Spanish Ministry of Sciences Innovation and Universities with the project PGC2018-094522-B-100 and by the Basque Government with the project IT1247-19

    Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification

    Get PDF
    When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The automation of histopathological breast cancer image classification holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convolutional neural networks (CNNs) have recently gained traction for their ability to more accurately classify histopathological breast cancer images. CNNs excel at extracting distinctive features that emphasize semantic information. However, traditional CNNs employing the softmax loss function often struggle to achieve the necessary discriminatory power for this task. To address this challenge, a set of angular margin-based softmax loss functions have emerged, including angular softmax (A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing a common objective: maximizing inter-class variation while minimizing intra-class variation. This study delves into these three loss functions and their potential to extract distinguishing features while expanding the decision boundary between classes. Rigorous experimentation on a well-established histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and ArcFace tend to emphasize augmenting within-class variations. These observations underscore the efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the embedding space. These loss functions consistently outperform softmax-based techniques, either by widening the gaps among classes or enhancing the compactness of individual classes.This work is partially supported by the project GUI19/027 and by the grant PID2021-126701OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”

    Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification

    Get PDF
    When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The automation of histopathological breast cancer image classification holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convolutional neural networks (CNNs) have recently gained traction for their ability to more accurately classify histopathological breast cancer images. CNNs excel at extracting distinctive features that emphasize semantic information. However, traditional CNNs employing the softmax loss function often struggle to achieve the necessary discriminatory power for this task. To address this challenge, a set of angular margin-based softmax loss functions have emerged, including angular softmax (A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing a common objective: maximizing inter-class variation while minimizing intra-class variation. This study delves into these three loss functions and their potential to extract distinguishing features while expanding the decision boundary between classes. Rigorous experimentation on a well-established histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and ArcFace tend to emphasize augmenting within-class variations. These observations underscore the efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the embedding space. These loss functions consistently outperform softmax-based techniques, either by widening the gaps among classes or enhancing the compactness of individual classes

    Analysis of Spanish text-thesaurus as a complex network

    Get PDF
    [EN]Based on the theoretical tools of Complex Networks, this work provides a basic descriptive study of a synonyms dictionary, the Spanish Open Thesaurus represented as a graph. We study the main structural measures of the network compared with those of a random graph. Numerical results show that Open-Thesaurus is a graph whose topological properties approximate a scale-free network, but seems not to present the small-world property because of its sparse structure. We also found that the words of highest betweenness centrality are terms that suggest the vocabulary of psychoanalysis: placer (pleasure), ayudante (in the sense of assistant or worker), and regular (to regulate)

    Deep Learning with Discriminative Margin Loss for Cross-Domain Consumer-to-Shop Clothes Retrieval

    Get PDF
    Consumer-to-shop clothes retrieval refers to the problem of matching photos taken by customers with their counterparts in the shop. Due to some problems, such as a large number of clothing categories, different appearances of clothing items due to different camera angles and shooting conditions, different background environments, and different body postures, the retrieval accuracy of traditional consumer-to-shop models is always low. With advances in convolutional neural networks (CNNs), the accuracy of garment retrieval has been significantly improved. Most approaches addressing this problem use single CNNs in conjunction with a softmax loss function to extract discriminative features. In the fashion domain, negative pairs can have small or large visual differences that make it difficult to minimize intraclass variance and maximize interclass variance with softmax. Margin-based softmax losses such as Additive Margin-Softmax (aka CosFace) improve the discriminative power of the original softmax loss, but since they consider the same margin for the positive and negative pairs, they are not suitable for cross-domain fashion search. In this work, we introduce the cross-domain discriminative margin loss (DML) to deal with the large variability of negative pairs in fashion. DML learns two different margins for positive and negative pairs such that the negative margin is larger than the positive margin, which provides stronger intraclass reduction for negative pairs. The experiments conducted on publicly available fashion datasets DARN and two benchmarks of the DeepFashion dataset—(1) Consumer-to-Shop Clothes Retrieval and (2) InShop Clothes Retrieval—confirm that the proposed loss function not only outperforms the existing loss functions but also achieves the best performance

    Energy demands of diverse spiking cells from the neocortex, hippocampus, and thalamus

    Get PDF
    It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential. The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na+ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 and 18 nJ/cm(2) for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm(2) per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.Authors received support from UFI11/07 of the UPV/EHU, SandS project EU grant agreement 317947, MECCO projects TIN2011-28753-C02-02, TIN2011-23823, which are partially funded by FEDER
    corecore